
NodeC++
Release 0.0.1

Sep 27, 2019

Setup

1 Building NodeC++ with cmake 1
1.1 Requirements . 1
1.2 Downloading . 1
1.3 Running cmake . 1
1.4 Footnotes . 2

2 Starting a HTTP Server 3
2.1 Initalize the class . 3
2.2 Start the server . 3

3 Creating Pages & Routes 5
3.1 Creating the callback function . 5
3.2 Registering the callback function . 5

4 Creating a public directory 7
4.1 What is the point . 7
4.2 How to registar the public folder . 7

5 HTTP Server Functions 9

6 Plain Text Responce 11

7 Responce Class 13

i

ii

CHAPTER 1

Building NodeC++ with cmake

1.1 Requirements

• cmake (version 3.14 or above)

• a MacOS/Linux computer (NodeC++ doesn’t compile on Windows)1

1.2 Downloading

You will need to download NodeC++ from Github. We recommend that you use the master branch (this is the most
stable). If you want to use the development branch you can but there will be issues with it.

Now open a terminal and navigate to where you downloaded NodeC++

1.3 Running cmake

From the location of where you downloaded NodeC++ type

cmake -H. -B../build/

This will setup the build system in ../build

Once this completes navigate to ../build/ and run

make

This will fully build the project. This will produce the binaries in the output/ folder

Congratulations, you have built NodeC++ using cmake!

1 You may be able to build NodeC++ on Windows 10 using WSL (Windows Subsystem for Linux), but this is not tested.

1

NodeC++, Release 0.0.1

1.4 Footnotes

2 Chapter 1. Building NodeC++ with cmake

CHAPTER 2

Starting a HTTP Server

2.1 Initalize the class

Note:

This guide expects that you have already included the httpServer header.
I included my header like this:

#include "../headers/server.hpp"

Lets start by creating the httpServer class object. The initializer takes only one paramater, that is the port number.

int main() {
http_server httpServer(3000);
return 0;

}

I’ve started my server on port 3000, but you can start your server on any port (including port 80)

Warning: This HTTP Server does not https. If you choose to run the server on port 443, you may find that the
web browsers (such as Chrome) won’t open the page.

2.2 Start the server

If you complile and run the program, it will exit without the actually starting the http_server. This is now what we
need to do.

Add this to your code

3

NodeC++, Release 0.0.1

httpServer.start();

Yay! The server has started. If you go to http://localhost:3000 you will discover a welcome message.

Warning: Anything that you type after the start function will not be run until the server closes! The server takes
over the thread.

4 Chapter 2. Starting a HTTP Server

http://localhost:3000/

CHAPTER 3

Creating Pages & Routes

To create pages in NodeC++ you need to add routes that route your request to the right page. All of the routes require
a callback function (this function will get called every single time a request is made to the path). I’m going to create a
very simple index page.

3.1 Creating the callback function

I’m going to name my callback function indexCallback.

1 void indexCallback(Request req, responce res) {
2 res.write("Index Page");
3 res.send("200");
4 res.end();
5 }

While most of what this function does will be covered in the responceClass, i’ll just go over the very important bits.
The first line (where the function is decleared), requires two paramaters:

• a Request Struct

• a responce class

Warning: Without the correct paramaters the program will (most likley) not compile correctly

3.2 Registering the callback function

Currently, we have a callback function, but it does nothing. It is never called.

In order for us to be able to view the page, we need to registar it with the http_server object.

So back where the http_server object was defined, we need to add the following:

5

NodeC++, Release 0.0.1

httpServer.path_callback("/", &indexCallback);

Note: You need to add the callback before you start the server

6 Chapter 3. Creating Pages & Routes

CHAPTER 4

Creating a public directory

4.1 What is the point

The point of public directories is to hold your static infomation (such as .css, .js & .png). Everything in the defined
folder is publicly avaliable for anyone to access, so make sure that you are careful with what you put in the public
folder

4.2 How to registar the public folder

There is a requiremnet before you start this process, you have to create a folder and you have to know the path to it
(absoulute or relative should work)

Place this line of code before you start the server

httpServer.middleware_public("public/", "/public");

What does this mean?

• The first argument (where I type public/) is the location of the folder (this path happens to be relative).

• The second argument (where i type /public) is the path that prefixes the files in the folder.

7

NodeC++, Release 0.0.1

8 Chapter 4. Creating a public directory

CHAPTER 5

HTTP Server Functions

start (int port)

Starts the HTTP Server

Paramaters:
- port - The port number

returns void

path_callback (std::string path, pointer callback)

Registars a path along with its callback function

Paramaters:
- path - The path (on the web). Example is /index
- callback - the function that will get called when the path is called

returns void

middleware_public (std::string folder, std::string path)

Registars the public folder

Everything inside this folder is avaliable to anyone on the web

Paramaters:
- folder - The folder on the computer
- path - the path that will enable people to access it

returns void

9

NodeC++, Release 0.0.1

10 Chapter 5. HTTP Server Functions

CHAPTER 6

Plain Text Responce

Note: This launches off from Creating Pages. All of the code should be run from inside a callback function.

Lets talk about the responce object. It’s inside every callback function. It’s job is very simple (in theroy), it handles
the HTTP Responce.

This object is will be refered to as res

There are five parts of a responce:

1. HTTP Headers (content-type etc)

2. HTTP Responce Code (hopefully you always send 200)

3. Body Content (in this case its just plain text)

4. Sending the Request (Actually send the responce to the client)

5. Closing the Socket (Close the currently open socket after the responce has finished)

So with that out of the way, lets start coding!

The first line that i’m going to write is the actual message. But what about the headers? If you don’t include the
Content-Type header in your callback, it will automaticlly add the plain/text header.

res.write("Hello World");

This line of code has added Hello World to the write list. It hasn’t atually been written to the client, but it is preped
and ready to be sent.

Now we actually send the message. We need to include the HTTP Responce code. Our responce code is 200

res.write("Hello World");
res.send("200");

Yay the request is sent to the client!

11

../httpServerClass/creatingPages.http

NodeC++, Release 0.0.1

But were not done yet, the socket is still open, potentially hindering the browser from actually displaying the message.
So lets close it.

res.write("Hello World");
res.send("200");
res.end();

The request is now completely finished. The sockets have been closed.

Start the server and go to the path that your specifided when you registared the callback function. It should say:

Hello World!

12 Chapter 6. Plain Text Responce

CHAPTER 7

Responce Class

write (std::string append_message)

Add a message to the write stack

This is for text based messages (not binary etc)

Paramaters:
- append_message - The message to write to the client

returns int

writeBinary (char *binaryData, int length)

Registars a path along with its callback function

Paramaters:
- binaryData - The binary data. This needs to be a char *
- length - the length of the binaryData

returns int

html (std::string location, HTMLContent content[], int arrayLength)

Serves a HTML page

Paramaters:
- location - location inside the views/ folder
- content[] - the array for subsitution
- arrayLength - the length of the array

TODO:
- The arrayLength paramater should be dropped

returns void

13

NodeC++, Release 0.0.1

header(std::string type, std::string value)

Adds headers to the responce

Paramaters:
- type - The header name
- value - The value of the header

Example:
- The function res.header("Content-Type", "plain/text");
would add "Content-Type: plain/text" to the HTTP responce

returns int

contentType(std::string content_type)

Quick way of defining the ContentType header

Paramaters:
- content_type - the value to assign to the ContentType Header

returns int

send(std::string http_code)

Sends the HTTP Responce.

After this function is called

Paramaters:
- http_code - the HTTP code that will be sent with the responce

TODO:
- change the http_code from a std::string to int

returns int

Note: This project will not compile on Windows. This is because it uses the unix socket system (there in no WinSock
compatibility)

14 Chapter 7. Responce Class

	Building NodeC++ with cmake
	Requirements
	Downloading
	Running cmake
	Footnotes

	Starting a HTTP Server
	Initalize the class
	Start the server

	Creating Pages & Routes
	Creating the callback function
	Registering the callback function

	Creating a public directory
	What is the point
	How to registar the public folder

	HTTP Server Functions
	Plain Text Responce
	Responce Class

